Effect of Alloying on the Resistance of Cu-1 0% Ni Alloys to Seawater Impingement

ثبت نشده
چکیده

Cu-Ni castings and wrought pipes nominally contain 1% Fe to 2% Fe, which is added to improve the Cu-Ni alloy's erosioncorrosion resistance. After fabrication, Cu-Ni products are solution heat-treated to dissolve the iron uniformly andform a single-phase alloy. During welding, however, iron can precipitatefrom solid solution onto grain boundaries in the heat-alfected zones (HAZ). During seawater service, these iron-rich precipitates can dissolve preferentially (galvanically), leading to intergranular corrosion of the HAZ. The present report described 90-10 Cu-Ni alloys in which different soluble elements were substitutedfor iron. Jetimpingement testing in filtered natural seawater showed that 2% In also promoted improved erosion-eorrosion resistance. Because indium is very soluble in copper, it should not precipitate in the HAZ dUring welding and cause intergranular corrosion of the HAZ dUring seawater service. The present study reviewed the literature on the mechanisms by which iron is believed to improve the erosion-eorrosion resistance, and proposed a different model based on doping of the thin surface oxidefzlm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EFFECT OF COMPOSITION AND MILLING TIME ON THE SYNTHESIS OF NANOSTRUCTURED Ni-Cu ALLOYS BY MECHANICAL ALLOYING METHOD

Ni and Cu elemental powder mixtures containing 25, 50, and 75% at Cu were subjected to mechanical alloying in a planetary ball mill under various milling times. Structural evolution was analyzed by means of X-ray diffraction and scanning electron microscopy. Experimental results indicated that nanostructured solid solution alloy powders having homogeneous distribution of Ni and Cu were formed b...

متن کامل

Study of Structural Changes in Cu-Ni-Zn Mixture in Producing of Nickel Silver Alloys by Mechanical Alloying

Production of nickel-silver by mechanical alloying was investigated. Effects of parameters such as milling duration, ball to powder weight ratio, and chemical composition on mechanical alloying process, and alloys color and microstructure were studied. The milled powders were characterized, using XRD and SEM. Results showed that nickel-silvers could be produced by mechanical alloying in a wide ...

متن کامل

Study of Structural Changes in Cu-Ni-Zn Mixture in Producing of Nickel Silver Alloys by Mechanical Alloying

Production of nickel-silver by mechanical alloying was investigated. Effects of parameters such as milling duration, ball to powder weight ratio, and chemical composition on mechanical alloying process, and alloy's color and microstructure were studied. The milled powders were characterized, using XRD and SEM. Results showed that nickel-silvers could be produced by mechanical alloying in a wide...

متن کامل

Effect of Ni on Amorphization of Ti-Cu-Ni Ternary alloys Prepared by Mechanical alloying

Amorphous alloys has been taken into consideration because of their unique properties and are nominated as the future engineering materials. In this research, the effect of Ni and milling time on amorphization process and thermal stability of Ti50Cu50-xNix(x=10, 15, 25 at%) alloy system were investigated. The evolution of amorphization during milling, thermal stability and subsequent heat treat...

متن کامل

Structural and Mechanical Characterization of Austempered Cu - Sn Ductile Iron Alloys

The effect of heat treatment and alloying elements of copper and tin on the microstructure and mechanical properties of austempered ductile cast iron alloys is investigated. The austenitizing temperature of 890°C, the isothermal transformation (austempering) temperatures of 285, 335 and 375°C, and austempering times of 15, 30, 75 and 150 minutes are studied. The alloying elements of copper and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007